d라이브러리
"이상"(으)로 총 13,389건 검색되었습니다.
- 고려시대 선박, 잠에서 깨다!어린이과학동아 l2024년 02호
- 광합성을 통해 공기 중의 탄소-14를 흡수하고 방출합니다. 그런데 식물이 죽으면 더 이상 탄소-14를 흡수할 수 없어 체내에 있는 탄소-14의 양이 5700년마다 반으로 줄어들어요. 그래서 선박을 이루는 목재에 남아 있는 탄소-14의 농도를 알면 마지막으로 언제 탄소-14를 흡수했는지 알 수 있지요. 분석 ... ...
- [가상 인터뷰] 국내 최초 물리탐사 연구선 ‘탐해 2호’ 퇴역어린이과학동아 l2024년 02호
- 어떤 것이 매장되어 있는지 조사했어. 네 업적이 궁금해지는걸? 탐해 2호는 매년 150일 이상 바다를 누볐어. 우리나라 바다뿐만 아니라 해외, 주인이 없는 바다인 공해까지 진출해 구석구석 탐색했지. 특히 2005년부터는 동해 울릉분지 남서부 해역에서 미래 에너지원으로 꼽히는 가스 하이드레이트를 ... ...
- 소수 찾는 획기적인 방법 뤼카-레머 판정법수학동아 l2024년 02호
- 우리의 메르센, 그럼 그동안의 연구 성과를 인정받지 못했을까. 결코 아니었다. n이 소수일 때 2n- 1 꼴의 소수가 많다는 메르센의 생각은 소수를 찾는 획기적인 알고리듬을 ... 1초)밖에 걸리지 않는다. 로빈슨이 찾은 수 중 가장 큰 수가 뤼카가 발견한 2127 - 1 보다 17배 이상 자릿수가 크다 ... ...
- [Chapter3] 궁극의 문제, 소수 공식 찾기수학동아 l2024년 02호
- 논리에 맞지 않은 말을 하기 시작했다. 그는 자신이 무슨 말을 하고 있는지도 모른 채 이상한 말을 내뱉었다. 강연 직후 내시가 리만 가설을 풀다 조현병을 앓게 됐다는 소문이 퍼졌다. 이후 30년 동안 그를 괴롭힌 조현병이 발병한 것이다. 이 리만 가설이 바로 160여 년 동안 풀리지 않은 소수 관련 ... ...
- 리만 가설을 향한 수학자의 끝없는 도전수학동아 l2024년 02호
- 아벨상을 받은 수학자라서 ‘어쩌면 풀었을 수도 있다’라고 기대하게 했다. 그런데 이상한 점이 있었다. ‘증명을 발표했다’라는 뉴스는 많은데 증명이 맞았는지 틀렸는지 따져본 뉴스는 없고, 몇몇 수학자는 ‘아티야의 증명이 틀렸을 거로 생각한다’라면서, 논문을 검증할 계획이 없는 것처럼 ... ...
- 귤을 많이 담으려면 〇〇〇 모양으로? 귤포장에 숨은 수학과학동아 l2024년 02호
- 55개까지는 소시지 모양으로 포장하는 것이 부피를 가장 덜 차지합니다. 56개, 58~62개, 64개 이상은 덩어리로 포장하는 게 낫습니다. 57개, 63개의 경우 소시지 포장법이 낫다고 추정되지만 연구가 더 필요합니다. 이 삶의 지혜는 귤은 물론 다른 구형 물건을 포장할 때도 유효합니다. 만약 친구에게 잘 ... ...
- 혹등고래와 대화를 시도하다과학동아 l2024년 02호
- 국립국어원에서는 대화를 ‘마주 대하여 이야기를 주고받음’이라고 정의합니다. ‘둘 이상의 실체 사이에서 하는 상호적인 언어 소통’이라고 정의하기도 하죠. 혹등고래의 울음소리는 정말로 ‘혹등언어’일까요? 일부 동물들을 대상으로 이들의 언어가 인간의 언어와 구조적으로 얼마나 ... ...
- [가상 인터뷰] 24시간 둥지 지키는 펭귄의 수면 비법어린이과학동아 l2024년 02호
- 2019년 12월부터 2주간 알을 품는 턱끈펭귄 14마리를 관찰했는데, 턱끈펭귄이 하루에 만 번 이상 고개를 끄덕이며 미세 수면에 들어가는 것을 확인했어. 고개를 끄덕일 때마다 4초 정도 느린 뇌파가 관찰됐는데, 이는 깊은 잠에 빠졌다는 것을 뜻해. 그리고 뇌 절반은 쉬고 절반만 깨어 있는 상태도 ... ...
- 소수만 거르는 에라토스테네스의 체수학동아 l2024년 02호
- 체’다. 이 방법은 매우 단순하지만, 오늘날까지 확실하게 소수를 발견하는 이 이상의 방법이 없다. 그의 방법을 한 번 살펴보자. 100보다 작은 소수를 모두 찾고 싶다고 하자. 먼저 1부터 100까지 자연수를 모두 적는다. 1은 소수도 합성수도 아니므로 지운다. 2는 1과 자기 자신으로만 나뉘는 ... ...
- 모든 수의 근원 ‘소수’수학동아 l2024년 02호
- 소수를 모든 수의 근원으로 봤다. 먼 옛날 고대 그리스 철학자인 데모크리토스는 ‘그 이상 분해할 수 없는 것’이라는 의미의 원자(atom)가 다양한 물질을 만드는 궁극의 단위라고 생각했다. 마찬가지로 소수는 다양한 수를 만드는 궁극의 단위로 여겨졌다. 과거 정수론은 실용적이지 않은 분야로 ... ...
이전67891011121314 다음