d라이브러리
"모든것"(으)로 총 10,402건 검색되었습니다.
- 우리나라 ‘빨간불’은?어린이과학동아 l2023년 17호
- 이번 여름은 유독 무더웠습니다. 35도 안팎의 뜨거운 날씨가 이어지면서 지난 8월 1일 우리나라 모든 바다에 고수온 주의보가 내려지기도 했지요. 뜨거워지는 우리 바다, 수위가 앞으로 얼마나 오를까요? 동해 해수면이 더 빨리 오르는 이유 지난 3월 국립해양조사원은 서울대학교 지구환경과학부 ... ...
- [도전! M 체스마스터] 강력하게 뻗어나간다! 퀸어린이수학동아 l2023년 17호
- 퀸은 체스에서 가장 강력한 힘을 가진 기물이에요. 왼쪽, 오른쪽, 위, 아래, 직선 방향과 대각선 방향으로 자신이 원하는 만큼 움직일 수 있기 때문이지요. 여덟 방향 어디든, 꼼짝 마! 퀸은 킹, 룩, 비숍 등 다른 기물이 움직이는 방법을 모두 포함하고 있어요. 킹처럼 자신의 주변 모든 방향으로 ... ...
- [특집] 진실 혹은 거짓, 아인슈타인의 실수는?어린이과학동아 l2023년 16호
- “자연과 실험은 대다수의 이론이 틀렸다고 평가하네. 가장 친절한 반응조차 ‘그럴 수도’지.”내 예측이 현대에 와서 옳다고 밝혀진 내용도 있지만, 틀린 점도 있었다네. 나는 예전 우주가 멈춰 있을 거라고 믿었으니 말이야. 하지만 과학이란 틀린 점을 보완하면서 발전하는 법. 지식보다 중요한 ... ...
- [통합과학 교과서] 미운 오리도 사랑받고 싶어요!어린이과학동아 l2023년 16호
- “저기 아기 오리들 좀 봐! 너무 귀엽다!”탐정 사무소에서 집으로 돌아가던 꿀록 탐정과 개코 조수가 강가에서 헤엄치는 새끼 오리들을 발견하고 손을 흔들었어요. 오리들도 밝게 웃으며 함께 인사했죠. 그때 어딘가에서 울음소리가 들렸습니다.“흑흑” ●동화마을에 무슨 일이?미운 오리가 미 ... ...
- [LEVEL UP! 디지털 바른생활] 미디어 속 나 '본캐와 부캐?'어린이과학동아 l2023년 16호
- 인기리에 방영 중인 한 예능 프로그램 에서 진행자 유재석은 매번 새로운 캐릭터를 연기하는 모습을 보여줬어요. 트로트 가수가 되기도 하고, 치킨 가게나 연예 기획사의 사장이 되기도 했죠. 그때마다 이름을 달리하고, 옷이나 말투도 바꾸었어요. 진짜 그 캐릭터처럼 연기해, 보는 ... ...
- 아마존강 탐험대, 출격!어린이과학동아 l2023년 15호
- 내년 4월, 브라질의 한 탐험대는 제임스 콘토스 박사가 찾은 수원에서 출발해 아마존강의 길이를 재는 탐험에 나설 계획이야. 과연 탐험대는 세계에서 가장 긴 강을 찾는 논쟁의 종지부를 찍을 수 있을까? 어과동이 탐험대장의 이야기를 직접 들어 봤어! Q. 내년에 아마존강의 길이를 측정하러 직 ... ...
- [DAY3 미생물 혁신센터] 장 속 미생물로 자폐를 진단한다?어린이과학동아 l2023년 14호
- 홍콩 중문대학교에는 미생물 혁신센터가 있습니다. 우리 몸속의 다양한 미생물을 연구하는 곳이지요. 미생물 혁신센터장인 프랜시스 첸 교수는 센터를 이렇게 소개했어요. “여러분의 똥만 채취하면 우리는 여러분의 모든 것을 알 수 있어요.” 마이크로바이옴은 생물의 몸속에 사는 각종 미 ... ...
- [LEVEL UP! 디지털 바른생활] 미디어 속에서 소확행하는 방법!어린이과학동아 l2023년 13호
- 행복이란 무엇일까요? 미디어 속 다른 사람들의 모습을 보다가 괜히 나만 초라해지는 느낌이 든다고? 그런 생각이 든다면 잠깐! 사람들은 최고의 순간만을 편집해 미디어에 담거든. 오늘은 나 과학마녀 일리a가 미디어에서 행복해지는 방법을 특별 공개할게. 어과동 친구들도 미디어를 나의 역량과 ... ...
- [퍼즐 마법학교] 유니콘 마을을 돌려줘!어린이수학동아 l2023년 13호
- ‘철컥’ 소리와 함께 문이 열렸어. 나는 조심스럽게 문을 열었어.어딘가 또다른 함정이 숨어 있을지도 모르니까. 그런데 문 안쪽엔 놀랍게도 아름다운 들판이 펼쳐져 있었어.푸른 하늘과 눈부신 햇살, 시원한 바람....성밖의 삭막한 미로와는 너무도 달랐지.“와아...!”평화로운 풍경에 넋을 놓을 ... ...
- [Reth?nking] 제 11화. 증명은 왜 중요한가?수학동아 l2023년 12호
- 오랜 세월 동안 수많은 수학자가 증명을 통해 수학을 발전시켜왔다. 증명은 새로운 이론을 개발하고 문제를 해결하는 핵심 도구기 때문이다. 수학을 이해하기 위해 증명에 관한 논의가 꼭 필요한 이유다. 오늘은 증명의 쓰임과 역사를 통해 그 역할과 중요성을 알아보려고 한다. 첫 번째 질문 | ... ...
이전121314151617181920 다음