d라이브러리
"정수"(으)로 총 837건 검색되었습니다.
- 소수가 나오는 범위에 집중한 가우스수학동아 l2024년 02호
- 좌우대칭인 분포)’를 발견한 것도 가우스다. 1801년에는 저서 를 써서 정수론을 체계적으로 정리하기도 했다. 1792년 겨우 15세였던 가우스는 매일 15분씩 투자해 어떤 수가 소수인지 따졌다. 가우스는 수를 1000씩 나눠 끈질기게 세었다. 결국 1부터 100만 개 정도까지 조사하면서 중요한 ... ...
- 리만 가설을 향한 수학자의 끝없는 도전수학동아 l2024년 02호
- 말했다고 전해진다. 리만 가설이 수학계에서 중요한 이유는 소수를 다루는 몇몇 정수론 이론이 리만 가설이 참이라는 전제를 두기 때문이다. 리만 가설을 통해 소수의 규칙이라는 영광을 드디어 손에 쥐고, 수의 비밀을 풀 수 있기를 기대한다. 또한 현대 암호체계는 소수에 기반을 두고 있어 AT ... ...
- 희대의 난제 리만가설을 만든 리만수학동아 l2024년 02호
- 못하던 중 가우스에게 설득을 당해 수학을 시작하게 된다. 그렇게 리만은 해석학, 정수론, 미분기하학 등에서 큰 업적을 남겼다. 리만 기하학, 리만 가설, 리만 제타 함수, 리만 다양체 등 여러 개념과 추측을 제시했다. 특히 구부러진 공간에 적용할 수 있는 새로운 기하학의 필요성을 제기했다. ... ...
- 편지에서 시작된 난제 골드바흐의 추측수학동아 l2024년 02호
- 마찬가지였다. 하지만 오일러는 1을 소수로 보지 않았다. 그리고 골드바흐의 추측에서 정수를 홀수와 짝수로 나누면 짝수의 경우에는 두 소수의 합으로 나타낼 수 있어 그의 추측을 수정한 것이다. 현재 수학자들은 두 번째 명제만을 ‘골드바흐 추측’이라고 부르고, 첫 번째 명제는 ‘약한 ... ...
- 편견을 넘는 수학자 이탕 장수학동아 l2024년 02호
- 이곳에서 미적분 수업을 진행하며 학생들에게 인기를 끌었고, 시간이 날 때마다 정수론 연구에 매진했다. 2010년부터 쌍둥이 소수 추측에 집중하다가 2012년 친구 집에서 머물던 중 문득 문제를 풀 수 있는 아이디어를 생각해냈고, 정리해 2013년 학술지 에 발표한 것이다. 쌍둥이 소수 ... ...
- 영재학교 전교생이 열광하는 소수교수학동아 l2024년 02호
- 공부한 내용을 발표하는 시간을 가진다. 소수를 이용한 수학 문제를 만들고 공유하며, 정수론 교재도 직접 제작해 공부한다. 모니터에 숫자를 하나씩 띄워놓고 부원들끼리 해당 수를 암산으로 소인수분해 하는 활동을 할 때도 있다. 무엇보다 이들이 가장 집중하는 일은 소수를 이용한 이벤트를 ... ...
- 아직 다 밝히지 못한 정체 소수수학동아 l2024년 02호
- 한 가지 형태로 나타나야 한다는 ‘산술의 기본정리’에 어긋난다. 산술의 기본정리는 정수론 연구에서 기본이 되는 약속이다. 또 다른 이유는 소수를 처음 정의할 때 역수가 있는 수는 제외하기로 한 것과 관련이 있다. 소인수분해를 자연수 범위에서만 하는 이유이기도 하다. 만약 소인수분해를 ... ...
- 누구에게나 열려 있는 거대 소수 찾기수학동아 l2024년 02호
- 소수를 찾는 GIMPS에 자연스레 관심이 쏠릴 수밖에 없었다. 심지어 어렸을 때부터 정수론과 소수에 큰 관심을 갖기도 했다. 소수 사냥꾼, 우리나라에도 있다! 우리나라 수학 강사 최경재 씨도 GIMPS에 참가해 20년 넘는 기간 동안 거대 소수 찾기에 몰입하고 있다. 최 씨가 소수에 처음 관심을 두게 된 ... ...
- 쌍둥이 소수 추측으로 필즈상 수상한 제임스 메이나드수학동아 l2024년 02호
- 밝히는 것이다. 즉 실수를 유리수로 근사시킬 때의 오차에 관한 정리다. 이런 업적으로 정수론계의 유망주로 떠오른 메이나드 교수는 2022년 필즈상을 거머쥐었다. 필즈상 수상 이후 그는 대중 강연에서 종종 모습을 드러내는데, 그때마다 소수의 아름다움에 대해 연설한다. 메이나드 교수는 202 ... ...
- 여성 수학자의 열정 담기다, 소피 제르맹 소수수학동아 l2024년 02호
- 페르마는 한 책 귀퉁이에 ‘n이 3 이상의 정수일 때, xn+yn = zn을 만족하는 양의 정수 x, y, z는 존재하지 않는다. 여백이 부족해 증명 방법은 적을 수 없다’라고 적었다. 이 추측이 바로 여러 수학자가 증명을 해내려 머리를 싸맸던 난제 페르마의 마지막 정리다. 페르마의 마지막 정리는 350년 ... ...
이전123456 다음