d라이브러리
"이상"(으)로 총 13,389건 검색되었습니다.
- 2011 한국수학올림피아드 1차 시험 대비법 수학 최고수라면 도전하라!수학동아 l2011년 05호
- 줘 한 학생이 양쪽에서 상을 받을 수 있음.* 2차 시험 응시자격 : 1차 시험에서 장려상 이상 수상자.* 여름·겨울학교 : 여름학교는 1차 시험, 겨울학교는 2차 시험에서 성적우수자 50~60명씩 선발해 2주 동안 창의적인 수학실력을 키울 수 있는 특별 교육을 진행하는 프로그램. 여학생과 수도권 외 지역 ... ...
- 가장 무섭고 편안한 집짓기과학동아 l2011년 05호
- 방을 세어보니 대략 1300개 이상이었다. 애벌레들을 지키고 양육하는 말벌도 1100개체 이상이었으니 그 규모가 실로 엄청났다. 개체들의 힘도 센데다 이렇게 큰 규모의 집단생활을 하니 감히 이들을 건드릴 자가 있겠는가.한참 말벌에 정신이 팔렸는데 꼭대기 층의 애벌레집 주변에서 움직임이 있었다. ... ...
- PART 1-3 세계 어린이들의 보드게임, 만카라수학동아 l2011년 05호
- 칸에 있는 씨앗 2개도 따먹을 수 있다.➌ 끝내기 규칙 : 두 사람 중 한 사람의 공간에 더 이상 씨앗이 남지 않으면 게임을 종료한다. 게임을 마쳤을 때, 따먹은 씨앗의 개수가 많은 사람이 이긴다.만카라에서 씨앗을 따먹는 경우 B가 씨앗을 뿌릴 차례다. B가 맨 오른쪽에서 두 번째 칸에 있는 씨앗 ... ...
- PART 2. 어떨 때 전자계산기를 쓰나?수학동아 l2011년 05호
- 우리나라 학생의 수학 공부 시간은 주당 8시간 55분으로 핀란드의 4시간 22분보다 2배 이상이다. 미국은 핀란드와 비슷하다. 우리나라 중등교육이 우수하다기보다는 학생들이 다른 나라보다 훨씬 많은 시간을 수학 공부에 써 성적이 높게 나왔다는 해석이 가능하다.한편 미국에서 1989년부터 또는 200 ... ...
- 왜 1+1=2인가?수학동아 l2011년 05호
- 수는 1 다음 수의 다음 수가 되겠지요. 그래서 1+2 = 3이에요.페아노의 이 약속은 몇 만 년 이상 사용해온 수를 가장 타당한 방법으로 설명한 것이라고 보면 돼요. 페아노가 새롭거나 색다른 약속을 제안한 것은 아니라는 말이지요. 우리가 자연스럽게 사용해오던 자연수의 규칙을 정리한 것뿐이니까요 ... ...
- 알쏭달쏭 표준을 잡아라! 한국표준과학연구원어린이과학동아 l2011년 05호
- 빛을 보고 버튼을 눌러 반응 시간을 측정했답니다. 온도의 단위 : 켈빈(K)0K은 이상 기체의 부피가 0이 되는 온도를 말해요. 0℃는 273.15K와 같아요. 측정기로 온도를 재 봤어요! 전류의 단위 : 암페어(A)전기에너지가 흐르는 것을 전류라고 해요. 이런 전류 의 크기를 나타내는 단위가 암페어(A)예요. 이 ... ...
- PART 1-2 골고루 세력을 확장하라, 인지니어스수학동아 l2011년 05호
- 점수가 자신의 최종점수가 되므로 최종점수는 6점이다. 실제 게임에서는 판에 타일을 더 이상 놓지 못할 때까지 게임을 진행한다.tip 인지니어스 개발자라이너 크니치아는 독일의 울름대에서 수학으로 박사학위를 받은 게임 개발자다. 독일에서는 해마다 ‘올해의 게임상’을 시상하는데, ... ...
- PART 1. 왜 수학시간에 전자계산기를 쓰려고 하지?수학동아 l2011년 05호
- 6분에 맞추는 데 필요한 버스의 최소 대수는?전자계산기가 없다면 이 문제처럼 버스 대수 이상의 답을 요구하기가 어려우며, 학생들은 많은 고민없이 계산하며 답을 구한다. 하지만 전자계산기를 활용한다면 조금 더 복잡한 상황을 제시할 수 있어단순한 계산을 넘어서는 문제를 만들 수 있다. 예를 ... ...
- PART 3. 왜 고등학교에서 쓰나?수학동아 l2011년 05호
- 기능은 도형과 함수, 행렬, 표, 확률, 그래프 기능이다. 그래픽 전자계산기에서 2차 이상의 함수를 그래프로 그린 뒤 특정 부분을 계속 확대해보자. 이때 확대한 부분이 미분했을 때 0이 되는 극점이라면 어느 시점에 직선으로 바뀐다. 하지만 극점이 아니면 아무리 확대를 해도 직선으로 나타나지 ... ...
- I-빔 타일 깔기수학동아 l2011년 05호
- (6+2m)×(8+2n) 크기의 체스판은 늘 도미노로 속선 없이 깔 수 있음을 보여라. 단, m, n은 0 이상의 정수이다.정리m×n 체스판 중에서 도미노로 속선 없이 깔 수 있는 경우는 2×1, (6+2m)×(5+2n)과 (6+2m)×(8+2n), 그리고 이들의 가로와 세로가 뒤바뀐 경우들이 전부이다. 단, m, n≥0이것으로 도미노로 하는 ...
이전569570571572573574575576577 다음