d라이브러리
"승리"(으)로 총 816건 검색되었습니다.
- [냠냠! 어수잼] '큰 수'를 마음껏 상상해 봐!어린이수학동아 l2023년 02호
- 대각선으로 ‘네 자리 수’가 만들어지면 빙고 성공! 먼저 ‘3 빙고’에 성공하는 사람이 승리합니다. ‘천의 자리’에는 0이 올 수 없다는 사실을 꼭 기억하세요. 황금이 많아도 너무 많아! 찬 살만 왕자는 왕국의 황금이 무려 10,489,978,540,360개라는 걸 알아냈어요! 이 황금을 한데 모으면 얼마나 ... ...
- [메타버스 여행법] 점프 점프! 제페토에서 뛰어 보자, 팔짝!어린이과학동아 l2023년 01호
- 내 영역을 더 넓게 만들어야 이기니까 같은 시간에 더 자주, 더 힘차게 뛰어야 대결에서 승리하겠죠? 참, 점프하는 동안 망치 아이콘이 눈에 띈다면 절대 놓치지 마세요. 그 망치를 사용하면 순식간에 엄청나게 넓은 영역을 차지할 수 있으니까요. 커다란 망치로 있는 힘껏 바닥을 내리치는 내 ... ...
- [과동키즈] 삼국지 매니아가 철도 계획가로… “저는 성덕입니다”과학동아 l2023년 01호
- 삼국지를 좋아했던 친구들은 모두들 자신을 제갈공명에 이입하곤 했다). 이 게임에서 승리하려면 전쟁의 전술과 전략을 잘 짜야 했다. 모두가 제갈공명이었던 나와 친구들은 게임을 공략할 때 군수물자 보급을 중요하게 살폈다. 우리들은 물자를 수송하는 것이 산세가 험한 촉나라 지역에서는 ... ...
- 질문하면 답해 ZOOM!어린이과학동아 l2022년 20호
- 아마 여러분이 같은 보를 낼 것이라 생각할 테니까요. 비정한 가위바위보의 세계에서 승리하기를 바랍니다. Q 사과를 자르고 그대로 놔두면 왜 색깔이 변하나요? 박서진 (seeojin314)A 깎은 사과를 바로 먹지 않고 잠시 놔두면 노란색 과육이 점점 갈색으로 변하는 모습을 볼 수 있습니다. 이 현상을 ... ...
- [그림으로 보는 수학] 신나는 가을운동회 ‘구’를 굴리자!어린이수학동아 l2022년 19호
- 신나는 가을운동회가 열렸어요. 구 모양의 커다란 공을 떼굴떼굴 굴려 목적지에 먼저 도착하면 승리하지요. 앗, 조심해요! 원뿔 모양의 러버콘을 넘어뜨리면 안 되거든요. ...
- [도전! M 체스마스터] 킹을 위협하라! 퀸의 체크메이트어린이수학동아 l2022년 18호
- 상황에서 더는 피할 수 없을 때를 말해요. 체크메이트가 되면 킹을 위협한 팀에게 승리가 돌아가지요. 퀸의 체크메이트는 가장 강력해요. 퀸은 여덟 방향 어디든 움직일 수 있어서 위협받는 킹이 꼼짝못 하게 만들어요. 아래와 같이 검은색 킹과 흰색 킹, 흰색 퀸만 남은 상황에서도 퀸은 혼자 힘으로 ... ...
- [똥손 수학체험실] 내 땅 내 땅, 네 땅 내 땅 ! 더 넓은 땅을 차지하라!어린이수학동아 l2022년 17호
- 말이 서 있는 모든 칸의 넓이를 더해 더 넓은 땅을 가진 사람이 이겨요. 놀이에서 승리하는 비법은 과연 뭘까요? 눈으로 봐선 몰라, 뭐가 더 넓은지 위 그림에서 분홍색 칸과 하늘색 칸 중 더 넓은 땅은 어디일까요? 눈으로만 봐선 어느 땅이 더 넓은지 확신할 수 없어요. 하지만 변의 길이를 재서 ... ...
- [도전! 체스마스터] 전투에서 승리하려면? ‘킹’을 공격하라!어린이수학동아 l2022년 16호
- M 체스 세계에선 전투가 한창이에요. 전투에서 이기기 위해선 상대편 ‘킹’을 위협하고, 우리 편 킹을 보호해야 하지요. 킹은 퀸처럼 모든 방향으로 이동할수 있지만 한 칸씩만 움직여요. 아래 체스판으로 킹의 행마법을 연습하고 체스 마스터에 도전하세요! ※박흥철 대한체스연맹 서울시지부 ... ...
- [통합과학 교과서] 불화살을 쏘아 올려라!어린이과학동아 l2022년 15호
- 진지에는 모두 불이 붙어 불타올랐습니다. 수적 열세에도 불구하고 제갈량은 전쟁을 승리로 이끌 수 있었습니다.“고맙소! 탐정 선생! 그대 덕분에 이 전쟁에서 이길 수 있었소! 책사라는 체면도 지킬 수 있었으니 정말 감사하오 ... ...
- [역설 나라의 앨리스] 제 11장. 선택 공리가 만드는 역설수학동아 l2022년 12호
- 생각했어요. 이 논쟁에서 누가 승리를 거두었을까요? 아무래도 형식주의가 승리했다고 봐야겠네요. 대다수의 수학자는 선택 공리를 인정할 뿐만 아니라, 비구성적 논증도 왕왕 사용하니까요. 그러나 선택 공리와 비구성적 논증이 제기하는 수수께끼는 여전히 수학, 논리학, 그리고 철학의 난제로 ... ...
이전2345678910 다음