d라이브러리
"사이"(으)로 총 9,894건 검색되었습니다.
- [과학뉴스] 수명을 다한 별, 행성을 집어삼키는 중!?어린이과학동아 l2023년 11호
- 있는 팔로마천문대에서 지구로부터 약 1만 2000광년 떨어진 독수리자리 주변의 별이 열흘 사이에 약 100배 밝아졌다가 사라진 뒤 낮은 온도의 신호가 지속되는 현상을 포착했어요. 연구팀은 폭발의 원인을 알아내기 위해 낮은 온도의 우주를 관측하는 데 사용되는 적외선카메라의 관측 자료를 ... ...
- [최신 이슈] 40년 만에 달라진 서울 지하철 노선도, 그 뒤에 인지과학이 있다과학동아 l2023년 11호
- 사람들이 정보를 읽지 않고 뾰족한 예각에 집중한다(이전 노선도의 홍대입구-공덕 사이구간이 신경쓰이는 것처럼!)”면서 “8선형 방식을 이용해 노선이 꺾이고 교차하는 각도를 맞춰줘야 지도 속 정보가 눈에 들어온다”고 설명했다. 8선형(Octoliner) 방식은 영국의 정보 디자이너 헨리 벡이 1933년 ... ...
- [이참결 독자가 쏘아올린 기사] 우주 팽창의 중심은 왜 존재하지 않을까과학동아 l2023년 11호
- 운동을 한다고 생각하는 것”이라고 했습니다. 은하는 움직이지 않고, 은하와 은하 사이 공간 자체가 늘어난다고 봐야 한다는 겁니다.승하맘이나영 님도 같은 의미의 댓글을 남겼습니다. “빅뱅은 사전적 의미로는 크고 강력한 폭발이나 분출을 의미합니다”라며, “하지만 과학적 의미로의 빅뱅은 ... ...
- [DGISTX융복합 파트너] 경쟁상대가 아닌 협업의 도구 AI-인간 상호작용을 연구하다과학동아 l2023년 11호
- “DIAG는 DGIST Intelligence Augmentation Group의 약자입니다.” 송 교수는 “인간과 컴퓨터 사이의 상호작용에 관해 연구하는 분야인 ‘HCI(Human Computer Interaction)’가 AI 기술을 바라보는 철학이 담겼고, 박사학위 과정을 밟은 미국 미시간대의 중앙광장 이름(The Diag)과 동의어”라 ...
- [특집] 생전 모습 거의 그대로! 우리나라의 미라어린이과학동아 l2023년 10호
- 자연 미라가 발견되는 다른 나라들과 달리, 우리나라 미라는 대부분 15세기에서 18세기 사이의 조선시대 무덤에서만 발견됩니다. 그 이유는 조선시대의 장례 문화인 ‘회곽묘’ 때문이에요. 회곽묘는 시신을 나무 관 속에 눕힌 뒤 석회와 모래, 황토 등을 섞은 재료를 관 주변으로 부어 단단하게 굳힌 ... ...
- [꿀꺽! 수학 한 입] 기호의 등장어린이수학동아 l2023년 10호
- 숫자와 숫자 사이에 가운뎃점(・)을 찍기도 했고, 르네 데카르트★ 같은 수학자는 두 수 사이에 쉼표(,)를 썼지. 지금까지도 이 세 개의 기호는 모두 곱셈을 나타낼 때 사용해. 나눗셈을 뜻하는 기호인 ‘도 곱셈과 비슷한 시기인 1659년, 스위스 수학자 요한 하인리히 란이 쓴 책 에 등장해. ... ...
- [기획] 분자의 음악, 바닐라 소리는 달콤해!어린이과학동아 l2023년 10호
- 교수는 “대중에게 음악은 화학이나 컴퓨터 언어에 비해 받아들이기 수월해 기계와 사람 사이의 정보 해석 격차를 해소할 수 있다”며 “음악은 학생들이 화학 개념을 배우는 새로운 방법을, 연구자에겐 또한 직관적인 정보를 줄 참신한 방법이 될 것”이라고 전했습니다 ... ...
- [도전! 섭섭박스 메이커] 내가 만든 작품에 조명을 ON! 클레이 회로어린이과학동아 l2023년 10호
- 몸통을 전기가 통하지 않는 고무 클레이로 만드는 데는 이유가 있어요. 두 날개 사이 전자의 흐름을 막아야 LED 전구를 통해 전류가 흘러 전구에 불이 들어 오거든요. 원하는 모형을 만들어 불을 켜보세요! 알아보자!살아 있는 동물에서 전극이 만들어졌다? 올해 2월, 스웨덴 린셰핑대학교 ... ...
- 천재성이 빛났던 순간수학동아 l2023년 10호
- 타오 교수는 어떤 인생을 살아왔을까? 그는 평생 천재적인 면모를 보여왔다. 학창 시절에는 수학적 이해가 빨랐던 ‘영특함’으로, 수학자가 되어서는 분야 ... 발표되지 않았다. 그럼에도 쉽게 이해할 수 있을 만큼 명료하게 쓰여 있어 수학자들 사이에서 거의 사실로 받아들여지고 있다 ... ...
- [Reth?nking] 미적분은 어떻게 꽃피웠는가?수학동아 l2023년 10호
- 이론을 발전시켜요. 가장 대표적인 이론이 바로 ‘특성삼각형’입니다. 특성삼각형은 사이클로이드와 같은 곡선 위의 한 점에서 접선을 긋고 그 접선의 일부분을 빗변으로 하는 직각삼각형이에요. 그리고 곡선 아래에서 이 특성삼각형과 닮음인 더 큰 직각삼각형을 찾을 수 있어요. 이 두 ... ...
이전222324252627282930 다음