d라이브러리
"정수"(으)로 총 837건 검색되었습니다.
- 현대 정수론의 선구자 페르마수학동아 l2024년 02호
- 업적이 상당해 그의 수학적 능력을 부정할 수 없는 것 또한 사실이다. 특히 페르마가 정수론에 관해 연구한 내용은 스위스의 또 다른 명성 높은 수학자 레온하르트 오일러가 연구하기 시작하면서 주목받기 시작했다. 소수가 되는 필요조건 페르마는 소수에 관해 여러 연구를 했는데, 가장 잘 ... ...
- 희대의 난제 리만가설을 만든 리만수학동아 l2024년 02호
- 못하던 중 가우스에게 설득을 당해 수학을 시작하게 된다. 그렇게 리만은 해석학, 정수론, 미분기하학 등에서 큰 업적을 남겼다. 리만 기하학, 리만 가설, 리만 제타 함수, 리만 다양체 등 여러 개념과 추측을 제시했다. 특히 구부러진 공간에 적용할 수 있는 새로운 기하학의 필요성을 제기했다. ... ...
- 편견을 넘는 수학자 이탕 장수학동아 l2024년 02호
- 이곳에서 미적분 수업을 진행하며 학생들에게 인기를 끌었고, 시간이 날 때마다 정수론 연구에 매진했다. 2010년부터 쌍둥이 소수 추측에 집중하다가 2012년 친구 집에서 머물던 중 문득 문제를 풀 수 있는 아이디어를 생각해냈고, 정리해 2013년 학술지 에 발표한 것이다. 쌍둥이 소수 ... ...
- 여성 수학자의 열정 담기다, 소피 제르맹 소수수학동아 l2024년 02호
- 페르마는 한 책 귀퉁이에 ‘n이 3 이상의 정수일 때, xn+yn = zn을 만족하는 양의 정수 x, y, z는 존재하지 않는다. 여백이 부족해 증명 방법은 적을 수 없다’라고 적었다. 이 추측이 바로 여러 수학자가 증명을 해내려 머리를 싸맸던 난제 페르마의 마지막 정리다. 페르마의 마지막 정리는 350년 ... ...
- RSA 암호의 미래는?수학동아 l2024년 02호
- RSA 암호는 연산 양이 많아 불편한 점이 있다. 대칭키 암호처럼 단순한 연산이 아니라 큰 정수 연산을 사용하기 때문이다. 특히 기술이 발전하면서 컴퓨터 기반 환경에서 암호 알고리듬을 고속화시킬 필요성이 커졌다. 또 스마트폰 보급에 따라 모바일 환경에서 암호 알고리듬을 소형화시키는 문제도 ... ...
- 귤을 많이 담으려면 〇〇〇 모양으로? 귤포장에 숨은 수학과학동아 l2024년 02호
- 무한정 많을텐데, 헤일즈는 어떻게 이 문제를 증명했을까요. 1월 8일, 미국 UC버클리에서 정수론을 연구 중인 이시우 박사과정 연구원을 화상 인터뷰로 만나 물어봤습니다. “헤일즈는 무한개의 구조를 고려해야 하는 케플러 추측을 수천 개의 최적화 문제로 바꿨습니다. 그후 최적화 문제의 각 ... ...
- 소수 통해 수학의 중요성 깨달아수학동아 l2024년 02호
- 괜히 반갑고, 또 숫자 하나에 대해 곰곰이 생각해보는 것이 즐겁다”라고 설명했다. 정수론 연구의 시작은 이렇게 수의 성질에 호기심을 가지는 행동이다. 정시우 학생은 “100만 번째 소수가 어떤 수인지 바로 알 수 없는 것처럼 소수는 불규칙한 점이 매력”이라면서, “소수를 더 공부하다가 이 ... ...
- 모든 수의 근원 ‘소수’수학동아 l2024년 02호
- 실용적이지 않은 분야로 생각돼 왔다. 그런데 수를 기반으로 하는 컴퓨터가 발달하면서 정수론을 이용해 여러 컴퓨터 기술을 만들 수 있다는 실용성이 입증돼 최근에는 활발하게 연구하고 있다. 특히 소수는 암호와 보안에 많은 역할을 함으로써 소수 연구에 많은 학자가 뛰어들고 있다. 암호에 관한 ... ...
- 누구에게나 열려 있는 거대 소수 찾기수학동아 l2024년 02호
- 소수를 찾는 GIMPS에 자연스레 관심이 쏠릴 수밖에 없었다. 심지어 어렸을 때부터 정수론과 소수에 큰 관심을 갖기도 했다. 소수 사냥꾼, 우리나라에도 있다! 우리나라 수학 강사 최경재 씨도 GIMPS에 참가해 20년 넘는 기간 동안 거대 소수 찾기에 몰입하고 있다. 최 씨가 소수에 처음 관심을 두게 된 ... ...
- 편지에서 시작된 난제 골드바흐의 추측수학동아 l2024년 02호
- 마찬가지였다. 하지만 오일러는 1을 소수로 보지 않았다. 그리고 골드바흐의 추측에서 정수를 홀수와 짝수로 나누면 짝수의 경우에는 두 소수의 합으로 나타낼 수 있어 그의 추측을 수정한 것이다. 현재 수학자들은 두 번째 명제만을 ‘골드바흐 추측’이라고 부르고, 첫 번째 명제는 ‘약한 ... ...
이전123456 다음