d라이브러리
"모두"(으)로 총 13,245건 검색되었습니다.
- Intro. 산타학교 졸업여행 매스트립수학동아 l2018년 12호
- 계획해야 합니다. 졸업 여행 미션을 수행해야 비로소 산타클로스가 될 수 있으니 모두 끝까지 최선을 다해주세요~! Intro. 산타학교 졸업여행 매스트립part 1. 매스시티 맵 만들기part 2. 최저가 여행, 외판원 문제로 해결part 3. 야구 보며 여행하는 외판원 문제part 4. 무한히 많은 도시 ... ...
- part 2. 최저가 여행, 외판원 문제로 해결수학동아 l2018년 12호
- 해밀턴 회로가 점을 중복 없이 다 지나는 거라면 한붓그리기는 각 점을 잇는 길, 즉 변을 모두 지나는 문제입니다. 해밀턴 회로가 외판원 문제와 엮이는 이유는 도시를 점과 변으로 이뤄진 그래프로 표현하기 때문입니다. 정십이면체의 각 꼭짓점을 도시라 하면 외판원 문제가 되지요. 실제 ... ...
- [오일러 프로젝트] 1만 개의 숫자에서 ‘우애수’를 찾아라!수학동아 l2018년 12호
- 적용되지는 않는다. 예를 들어 우애수 220과 284는 n=2일 때로 p, q, r이 각각 5, 7, 71로 모두 소수이고, 22×p×q와 22×r로 구해진다. 우애수 17296과 18416도 n=4일 때다. 반면 6232와 6368은 우애수지만 이 관계식을 만족하지 않는다. 쿠라가 만든 식은 우애수를 구하는 충분조건이지만 필요조건은 아니라는 ...
- [BJ맹추의 수동TV] 기사 속 수학 개념 완전정복 - 도형의 닮음 편수학동아 l2018년 12호
- 모든 정삼각형은 서로 닮음이라는 거예요. 정삼각형의 세 각은 항상 60°니까 세 각이 모두 같아 모든 정삼각형은 닮음이지요. 직각삼각형은 한 각이 항상 90°니까 나머지 두 각 중 한 각만 같아도 서로 닮음입니다. 이등변삼각형은 두 변의 길이가 항상 같으므로 두 이등변삼각형이 닮았는지 ... ...
- [서울대 공대| 재학생 인터뷰] ‘최고의 학과’ 만드는 ‘최고의 학생’과학동아 l2018년 12호
- 했음을 보여줬다. 사교육을 받은 경험이 없는 유 씨는 공부와 자기소개서, 면접 준비도 모두 혼자서 했다. 그는 “학과 홈페이지에 나온 연구실 설명 등을 꼼꼼히 읽은 것이 가장 도움이 됐다”며 “면접을 볼 때 사교육을 받지 않은 만큼 대학에 입학한 뒤에도 스스로 공부를 잘 할 수 있을 것 ... ...
- [출동! 어린이과학동아 기자단] 창경궁에서 만난 원앙과 꿀벌어린이과학동아 l2018년 12호
- 현장교육을 진행한 이화여자대학교 에코과학부 김윤전 연구원의 말에 지사탐 대원들은 모두 숨죽였지요. ‘삐-잇, 삐이이이익-’, ‘까아악, 까아악’ 가만히 귀를 기울이니 참새, 비둘기뿐만 아니라 다양한 새소리가 들렸어요.“평소엔 소음에 묻혀 새소리를 잘 못 들어요. 하지만 방금처럼 우리 ... ...
- [핫이슈] 바이오블리츠 코리아 2018어린이과학동아 l2018년 12호
- 탐사하며 다양한 생물종을 관찰할 수 있었어요. 24시간의 탐사 결과 확인한 생물종은 모두 1368종! 관속식물이 607종으로 가장 많았고, 곤충 514종, 거미 47종 등이 뒤를 이었답니다. 이번 바이오블리츠에 참가한 이우혁 대원은 “바이오블리츠를 통해 내 주변에 이렇게 많은 식물과 곤충이 사는지 처음 ... ...
- [팩트체크 2] 한반도에서 핵무기가 사라진다?!어린이과학동아 l2018년 12호
- 길주군 풍계리 핵실험장에서 거대한 폭발음이 들렸어요. 북한이 2009년부터 2017년까지 모두 다섯 번의 핵실험에 사용한 2번 갱도를 폭파시킨 거예요. 뒤이어 오후 2시 14분엔 4번 갱도를, 4시 2분엔 3번 갱도를 폭파하는 등 핵실험장의 세 개 갱도를 비롯해 생활건물 5곳과 막사 2동을 폭파시켰답니다 ... ...
- [식물 속 동물 찾기] 산꿩의다리어린이과학동아 l2018년 12호
- 길어서 어색하게 보이거든요. 산꿩의다리를 포함해 ‘꿩의다리속’에 속한 다른 식물도 모두 줄기가 가늘고 길어요. 금꿩의다리는 분홍 색깔의 큰 꽃잎을 가졌고, 좀꿩의다리는 꽃이 자잘하게 피며, 은꿩의다리는 이파리 뒷면에 흰색 돌기가 있지요. 이런 꿩의다리는 전세계에 150여 종이 있어요. ... ...
- 혈중알코올농도에 대한 과학적 쟁점 4과학동아 l2018년 12호
- 알코올 흡수 및 대사 능력, 혈중알코올농도의 개인차를 고려해 농도 상승기와 하강기를 모두 추정할 수 있는 ‘베이즈 방법’을 사용했다. 배 교수는 “베이즈 방법은 이전 사람의 데이터를 이용해 새로운 사람의 값을 추정하는 방식”이라고 설명했다. 동전 던지기에 빗대보자. 동전 던지기를 할 ... ...
이전266267268269270271272273274 다음