d라이브러리
"자연"(으)로 총 6,828건 검색되었습니다.
- [가상인터뷰] 상처 입은 동료를 치료하는 개미가 있다?!어린이과학동아 l2024년 03호
- 도움이 될까?개미들의 상처에 감염을 일으키는 세균은 주로 녹농균이야. 녹농균은 자연에서 쉽게 발견되는 세균으로, 개미뿐 아니라 사람에게도 감염을 일으키는 주요 병원균이지. 일부 녹농균은 사람이 사용하는 항생제에 내성이 있어 치료하기 어려워. 연구팀은 “마타벨레 개미가 동료를 ... ...
- [신의 책] 세상을 해석하는 수열수학동아 l2024년 03호
- 씨앗의 배열, 앵무조개 껍데기 등 자연에서 발견할 수 있어요. 이 수열은 사람들이 자연을 해석하는 데 도움을 줬답니다. 이처럼 수열은 세상을 이해하고 예측하는 데 큰 역할을 해요. 과거로부터 현재까지의 데이터 변화처럼 가까운 미래도 변할 거라고 가정하고 예측할 수 있거든요. 경제학에서도 ... ...
- [도전! 섭섭박사 실험실] 주머니에서 녹지 않는 초콜릿 만들기어린이과학동아 l2024년 03호
- 평균 온도가 오르면서 더위에 취약한 곤충들이 지내기 어려워졌기 때문이죠. 영국 런던 자연사박물관 생명과학부 연구팀은 2023년 전 세계 1507개 지역의 작물과 곤충 생태계를 분석했어요. 그 결과 작물의 수분을 도와주는 곤충은 모두 3080종이었습니다. 대부분은 카카오 열매, 커피 원두 등이 열매를 ... ...
- 타디그레이드 피플수학동아 l2024년 03호
- 미아는 크게 고개를 끄덕이고는 모니터 속의 남자를 손가락으로 가리켰다.“좋아. 그럼 자연인이 이 사람을 왜 그렇게 좋아했는지 한번 알아봐야겠어. 수업 시간에 배울 정도로 위대한 사람이니까 공식 자료도 많이 있겠지!”“디지털 변환 데이터는 이 컴퓨터로 바로 볼 수 있나 봐. 원본이나 ... ...
- 올해는 암컷, 내년엔 수컷? 동물의 ‘이유 있는’ 성전환과학동아 l2024년 03호
- 알을 낳았다는 보고도 있습니다. 그럼, 왜 모든 동물이 성전환을 하진 않는 걸까요? 자연 상태에서 성별을 바꾸는 생물에는 산호, 물고기, 굴, 새우 등이 있습니다. 경향성을 눈치채셨을까요. 현재까지 발견된 성별을 바꾸는 종은 대부분 물, 특히나 바다에서 서식하고 있습니다. 성전환을 하는 어류 ... ...
- 식품 속 발암물질 제대로 알기과학동아 l2024년 03호
- 유해 물질이 존재하기도 합니다. 발효과정에서 에탄올과 카보닐기의 화학 반응으로 ‘자연 발생’하는 물질입니다. 제아무리 명망 있는 종갓집의 장독대에서도 청국장과 된장을 만들 때 에틸카바메이트를 피할 길은 없다는 뜻이지요. 바삭한 감자튀김도 생각해 봅시다. 뜨거운 기름에 가열한 ... ...
- 업사이클드푸드 왜 필요해?어린이과학동아 l2024년 02호
- 업사이클드 푸드를 활용하면 환경 문제와 식량 위기도 해결할 수 있습니다. 심지어 맛도 영양도 만점이죠! 업사이클드 푸드, 식품 폐기물을 줄인다! 전 세계에서 약 7 ... 좋다”고 말했어요. ●국제연합세계식량기구(FOA), 2023 ●국제연합환경계획(UNEP), 2021 ●세계자연기금(WWF), 202 ... ...
- 모든 수의 근원 ‘소수’수학동아 l2024년 02호
- 그림은 1998년 독일의 화학자이자 작가인 피터 플리치타가 만든 ‘소수원’이다. 자연수를 1부터 순서대로 동심원 위에 시계 방향으로 나열하면 이 같은 그림이 나타난다. 숫자 24개마다 한 줄 밖의 원으로 이동하도록 설계돼 있고, 소수는 흰색 원 안에 표기했다. 그러자 소수는 2와 3을 제외하고는 ... ...
- 소수를 사랑한 신학자 메르센수학동아 l2024년 02호
- 찾지 못하고 일정한 형태를 가진 소수를 깊게 연구한다. 연구 과정에서 n이 1보다 큰 자연수일 때 Mn = 2n - 1인 수에 소수가 유독 많다는 사실을 발견했다. 이 형태의 수를 훗날 ‘메르센 수’라고 부른다. 먼저 메르센은 2n - 1 이 모두 소수일지도 모른다고 생각했다. 무작위로 골랐을 때 비슷한 ... ...
- 현대 정수론의 선구자 페르마수학동아 l2024년 02호
- 그런데 이 역시 정확한 증명을 적지 않았다. 페르마의 소정리를 간단히 말하면 a가 자연수고, p가 소수일 때 ap-1은 p의 배수라는 것이다. 이 정리는 17세기 독일의 수학자 고트프리트 라이프니츠와 오일러가 독립적으로 증명했다. 이 정리는 어떤 수가 소수일 필요조건이라고 할 수 있다 ... ...
이전12345678 다음